
J
H
E
P
1
1
(
2
0
0
8
)
0
6
8

Published by IOP Publishing for SISSA

Received: July 7, 2008

Accepted: November 5, 2008

Published: November 24, 2008

N = 4 BPS black holes and octonionic twistors

Yann Michel,a Boris Piolineab and Clément Rousseta

aLaboratoire de Physique Théorique et Hautes Energies,∗
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∗Unité mixte de recherche du CNRS UMR 7589
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1. Introduction

While supersymmetry often leads to solvability, its full power reveals itself only when

translated into holomorphy. For supergravity theories with N = 2 supersymmetries in 4

dimensions, this may be achieved using projective superspace [1] or harmonic superspace

techniques [2]. From a mathematical viewpoint, these techniques are closely related to

twistors, whose purpose is to enforce holomorphy in all complex structures at once. While

these methods have often been used to restrict the possible terms in the low energy effective

action, they can also be useful in constructing actual supersymmetric solutions of the field

equations [3 – 6].

In particular, in [3, 5, 7], it was shown that spherically symmetric BPS black hole

solutions in N = 2 supergravity correspond to holomorphic curves in Z, the twistor space

of the quaternionic-Kähler moduli space M3 which appears after dimensional reduction

along the time direction. This translation of supersymmetry to holomorphy was then

used to recover the known spherically symmetric BPS solutions, and to obtain the exact

quantum wave function for the radial evolution of the scalar fields, at two derivative order.
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It is likely that multi-centered BPS solutions could also be understood or generalized using

the same geometrical framework.

The purpose of this note is to extend the techniques of [3, 5] to the case of N = 4

supergravity with nv vector multiplets in 3+1 dimensions. Since the moduli space for

such theories in three-dimensions is a symmetric space M3 = K3\G3 = SO(8) × SO(nv +

2)]\SO(8, nv + 2) [8, 9], spherically symmetric solutions can be readily obtained by expo-

nentiating a one-parameter subgroup and so hold little mystery. Nevertheless, with a view

to a possible extension to the multi-centered case, or to the inclusion of higher derivative

corrections such as the one uncovered in [10], it is interesting to see how the translation of

supersymmetry to holomorphy takes place.

While an approach based on harmonic superspace ideas is also possible [11], we prefer

to follow the road of projective superspace, and the guidance of 1/4-BPS black holes. By

including the pair of Killing spinors preserved by the solution into the phase space of the

dynamical system governing the radial evolution equations, we show that BPS solutions can

again be lifted to holomorphic curves in the ”twistor space” Z = M3\G3 = [U(4)×SO(nv +

2)]\SO(8, nv +2), whose fiber F over any point in M3 is the Grassmanniann U(4)\SO(8) =

[SO(2) × SO(6)]\SO(8). The twistor space Z appears in Bryant’s classification of twistor

spaces of symmetric spaces [12], and its relevance for black holes was first suggested in [5].

In contrast to the standard twistor space for quaternionic-Kähler manifolds, Z does not

have a (twisted) holomorphic contact form, but instead an antisymmetric 4 × 4 matrix

of them, transforming into each other under the local SU(4) action. This complication

prevents us from constructing a complex coordinate system adapted to the Heisenberg

group of symmetries which is crucial for applications to black holes, although there is little

doubt that such a system exists. Similarly, we fail to produce the most general black hole

wave function, but we do exhibit some holomorphic wave functions.

The outline of this note is as follows. In section 2, we review the equivalence between

stationary, spherically symmetric solutions in 4D and geodesic motion in 3D, derive the

supersymmetry conditions, and obtain BPS and non BPS solutions by exponentiating

one-parameter subgroups in G3. In section 3, we construct the twistor space Z, first in a

”bottom-up” approach suggested by the black hole problem, and second in a more algebraic

”top-down” approach analogous to the construction in [13]. The equivalence between BPS

solutions and holomorphic curves is explained in section 3.4. In the appendices, we state

our conventions for SO(8) Dirac matrices, and review some general facts about nilpotent

co-adjoint orbits in orthogonal groups.

2. Black holes and geodesics

2.1 N = 4 supergravity in four dimensions

Consider N = 4 supergravity in 3+1 dimensions with nv vector multiplets [14, 15]. The

spectrum consists of the graviton, 4 gravitini, nv +6 Abelian vector fields, nv +1 Majorana

spinors and 6nv + 2 real scalar fields parametrizing the moduli space

M4 =
Sl(2,R)

U(1)
× SO(6, nv ,R)

SO(6) × SO(nv)
, (2.1)
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The first factor in (2.1) corresponds to the axion-dilaton field τ = τ1 + iτ2 from the gravity

supermultiplet, while the second factor corresponds to the scalars in the nv vector mul-

tiplets. The U(1) and SO(6) subgroups in the denominator of (2.1) correspond to the

R-symmetry group U(4).

An N = 4 supergravity with nv = 22 vector multiplets is known to arise by toroidal

compactification of the heterotic string on T 6. Theories with fewer vector multiplets can be

constructed by freely acting orbifolds of this model [16]. In these cases, as long as nv ≥ 6,

it is convenient to parametrize the second factor of (2.1) by the coset element

e6,nv =



e6 0 0

0 Inv−6 0

0 0 e−T
6


 .




I6 W B − 1
2W

T η6,nvW

0 Inv−6 −W T η6,nv

0 0 I6


 ∈ SO(6, nv ,R) (2.2)

which preserves the signature (+6,−nv) metric

η6,nv =




I6

−Inv−6

I6


 (2.3)

Here, e6 ∈ GL(6,R)
SO(6) is the viel-bein for the metric on T 6, which can be chosen in upper

triangular form, B is an antisymmetric 6 × 6 matrix corresponding to the Kalb-Ramond

two-form pulled back to T 6, and W is a 6 × (nv − 6) matrix corresponding to the Wilson

lines of the nv Abelian gauge fields in the Cartan subgroup of the 10D gauge group (or

its projection in the case of CHL compactifications). When nv < 6, one may instead

use the decomposition of so(6, nv,R) as the sum of a compact (i.e. antisymmetric) and a

non-compact (symmetric) element, and parametrize the second factor in (2.1) by a real

6 × nv-matrix A,

e6,nv = exp

(
06 A

AT 0nv

)
, η6,nv =

(
I6

−Inv

)
. (2.4)

For type II compactifications on K3 × T 2, or freely-acting orbifolds thereof, other

parametrizations adapted to the SO(4, 20) mirror symmetry group of K3 are more con-

venient (see e.g. [17]).

Irrespective of the choice of coset representative, the invariant metric on the second

factor in (2.1) can be obtained by decomposing the right-invariant one-form θ6,nv = de6,nv ·
e−1
6,nv

into a sum h6,nv +p6,nv of its compact and non-compact parts, and forming a quadratic

combination of the non-compact part p6,nv which is invariant under the action of the

maximal compact subgroup SO(6)× SO(nv). Combining it with the standard line element

on the upper-half plane, the moduli space metric is thus given by

ds2M4
=
dτ2

1 + dτ2
2

τ2
2

+ Tr(p2
6,nv

) =
dτ2

1 + dτ2
2

τ2
2

− 1

4
Tr(dM · dM−1) (2.5)

where M ≡ eT6,nv
· e6,nv is a symmetric matrix in SO(6, nv,R), invariant. Under the action

of an element g ∈ SO(6, nv), e6,nv transforms by right-multiplication by g followed by a

– 3 –
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compensating left-multiplication by an element in SO(6)×SO(nv) so as to restore the gauge

choice (2.2) , while M transforms linearly in the symmetric representation M → gTMg.

Including the nv + 6-dimensional gauge fields AΛ
µν (Λ = 1 . . . nv + 6), arranged as a

vector of SO(6, nv), the complete bosonic action of N = 4 supergravity at two-derivative

level is given by

S4 =

∫
d4x

√−g
[
R− 1

2

dτ2
1 + dτ2

2

τ2
2

+
1

8
Tr(dM · dM−1)

− 1

4
τ2F

T
µν ·M−1 · Fµν +

1

4
τ1F

T
µν · η6,nv · F̃µν

]
.

(2.6)

While the action is manifestly invariant under SO(6, nv ,R), the Sl(2,R) symmetry is only

visible at the level of the equations of motion. According to string duality conjectures,

the quantum theory is invariant under an arithmetic subgroup of Sl(2,R) × SO(6, nv,R),

whose precise definition depends on the model under consideration.

2.2 Reduction to 3D

In order to study stationary solutions, with metric

ds24 = −e2U (dt + ω)2 + e−2Uds23 , (2.7)

it is convenient to reduce the 4D N = 4 supergravity theory along the time direction to a

N = 8 theory supergravity in three Euclidean dimensions [5, 18 – 21, 7]. After dualizing

one-forms into pseudo-scalars, all bosonic degrees of freedom can be described by a non-

linear sigma model with non-Riemannian target space

M∗
3 = G3/K

∗
3 =

SO(8, nv + 2,R)

SO(6, 2) × SO(2, nv)
, (2.8)

coupled to 3D Euclidean gravity. The moduli space (2.8) is related to the more familiar

Riemannian space arising in the reduction along a space-like direction [8, 9]

M3 = G3/K3 =
SO(8, nv + 2,R)

SO(8) × SO(nv + 2)
(2.9)

by analytic continuation, as we describe presently. As in [22], it is convenient to parametrize

M3 by choosing a metric

η8,nv+2 =




I2

η6,nv

I2


 (2.10)

and a coset representative in (partial) Iwasawa gauge,

e8,nv+2 =




e−U
√

τ2
e−Uτ1√

τ2

0 e−U√τ2
0 0

0 e6,nv 0

0 0
eU

√
τ2 0

− eUτ1√
τ2

eU√
τ2




·




1 0 ζΛ −1
2ζ

ΛζΛ σ − 1
2ζ

Λζ̃Λ
0 1 ζ̃Λ −σ − 1

2ζ
Λζ̃Λ −1

2 ζ̃Λζ̃
Λ

0 0 I6,nv −ζΛ −ζ̃Λ

0 0 0 1 0

0 0 0 0 1




(2.11)
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with e6,nv ∈ SO(6, nv)/SO(6) × SO(nv) as in (2.2) or (2.4). The coordinates ζΛ and ζ̃Λ
correspond to the time-like component of the gauge fields AΛ

µν and their magnetic dual,

while σ is the pseudo-scalar dual to the one-form ω. The indices on ζΛ and ζ̃Λ are raised

and lowered using the metric η6,nv . The decomposition (2.11) reflects the fact that under

the subgroup R
+ × Sl(2) × SO(6, nv), SO(8, nv + 2) admits the ”real” 5-grading

1|−2 ⊕ (2, nv + 6)|−1 ⊕ [(1, 1) ⊕ (3, 1) ⊕ +(1, so(6, nv)]|0 ⊕ (2, nv + 6)|1 ⊕ 1|2 (2.12)

where the subscript indicates the charge under the R
+ factor generated by the diagonal

matrix (I2, 06,−I2). The adjective ”real” refers to the fact that each summand is invariant

under the Cartan involution, so that the corresponding coordinates are real.

The invariant metric on (2.9) is obtained by the same prescription as above (2.5),

namely by decomposing the right-invariant one-form

θ8,nv+2 = de8,nv+2 · e−1
8,nv+2 (2.13)

into its compact and a non-compact parts, and taking the SO(8)×SO(nv+2) invariant norm

of the non-compact part. This is most easily done by changing basis such that the maximal

compact subgroup corresponds to square blocks of size 8 and nv + 2 on the diagonal,1

η8,nv+2,K =




I4

I4

−Inv+2


 = ΩT

K η8,nv+2 ΩK (2.14)

Such a change of basis is non-unique; a convenient choice is2

ΩK =




1
2 0 0 0 1

2 0 0 0 0 1√
2

0

− i
2 0 0 0 i

2 0 0 0 0 0 1√
2

0 1√
2

0 0 0 1√
2

0 0 0 0 0

0 0 1√
2

0 0 0 1√
2

0 0 0 0

0 0 0 1√
2

0 0 0 1√
2

0 0 0

0 − i√
2

0 0 0 i√
2

0 0 0 0 0

0 0 − i√
2

0 0 0 i√
2

0 0 0 0

0 0 0 − i√
2

0 0 0 i√
2

0 0 0

0 0 0 0 0 0 0 0 Inv 0 0
1
2 0 0 0 1

2 0 0 0 0 − 1√
2

0

− i
2 0 0 0 i

2 0 0 0 0 0 − 1√
2




(2.15)

1The reason for choosing an off-diagonal metric for the SO(8) part will become apparent shortly.
2This choice ensures that the SU(3) subgroup of the 4D R-symmetry group SO(6) is mapped to a

subgroup

0

B

B

B

@

1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

C

C

C

A

inside SU(4) ⊂ SO(8).
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In this new basis, the Cartan decomposition of θ8,nv+2 is just the decomposition into

blocks of dimension 8 × 8, (nv + 2) × (nv + 2) and 8 × (nv + 2):

Ω−1
K θ8,nv+2 ΩK =

(
θAB pAa

pAa θab

)
(2.16)

where A,B = 1 . . . 8, a = 1 . . . nv + 2. Conventionally, we take the non-compact part pAa

to transform as a spinor of positive chirality under SO(8). The quadratic form

(
0 I4

I4 0

)

appearing in (2.14) is recognized as the charge conjugation matrix CAB in the spinor

representation (see appendix A for our conventions for SO(8) spinors). The compact parts

θAB and θab correspond to the SO(8) and SO(nv + 2) spin connections, respectively. Thus,

the right-invariant metric on M3 is given by

ds2M3
= pAapBbCABδab ≡ gmndφ

mdφn . (2.17)

The final result is

ds2M3
= dU2 + ds2M4

+ e−2U (dζΛ + τdζ̃Λ) ·M · (dζΛ + τ̄ dζ̃Λ)

τ2

+e−4U (dσ + ζΛdζ̃Λ − ζ̃Λdζ
Λ)2 (2.18)

where ζ̃Λ, ζ̃
Λ, σ are identified as the time-component of the gauge field AΛ and its magnetic

dual ÃΛ, and the NUT scalar dual to the connection one-form ω in (2.7). This relation

between the moduli spaces in 3D and 4D is a straightforward generalization of the c-map

encountered in the dimensional reduction of N = 2 theories [23]. As mentioned above, the

indefinite metric on the manifold M∗
3 is obtained from (2.17) by analytically continuing

(ζΛ, ζ̃Λ) → −i(ζΛ, ζ̃Λ).

The supersymmetrization of the non-linear sigma model on M3 was studied in detail

in [8, 24, 25]. We briefly summarize the main results following [25]. The N = 8 super-

symmetry algebra relies on the existence of seven almost complex hermitian structures

fPm
n (P = 2 . . . 8) satisfying the SO(7) Clifford algebra. From these, one may construct 28

two-forms fµν = fµν
mndφmdφn (µ = 1 . . . 8) via

fPQ
mn = f [Pp

m fQ]q
n gpq , f1P

mn = −fP1
mn = gmpf

Pp
n . (2.19)

The tensors fµν are covariantly constant, and equal to the curvature of the SO(8) spin

connection Qµν = Qµν
m dφm,

dQµν + 2Qρ[µ ∧Qν]ρ =
1

2
fµν . (2.20)

The fermionic degrees of freedom are most easily described by introducing a fermionic

tensor χmµ subject to the constraint

χmµ =
1

8
(δµ

ν δ
m
n − fµm

νn )χnν , (2.21)

– 6 –
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which projects down the number of components to 8(nv+2). The supersymmetry variations

of the gravitini ψµ
M (M = 1, 2, 3) and the dilatini χmµ, for vanishing fermionic background,

are then written as

δψµ
M = DM ǫµ , δχmµ =

1

2
(δµνδmn − fµν

mn)γM∂Mφ
nǫν (2.22)

For our purposes, it will be convenient to solve the constraint (2.21) explicitly, as

χmµ = emAaΓ
µ
AA′λ

aA′

(2.23)

where emAa = (pAa
m )−1 is the inverse viel-bein afforded by the SO(8)× SO(nv + 2) restricted

holonomy, and Γµ
AA′ are the SO(8) sigma matrices. In terms of the unconstrained spinor

λaA′
, the variation of the dilatini is given by

δλa
A′ = pAa Γµ

A′A εµ . (2.24)

Notice that the supersymmetry parameter ǫµ, dilatini λaA′
and bosonic derivatives pAa

transform as the three inequivalent 8-dimensional representations of the R-symmetry group.

Of course, one could use triality and permute the representations assigned to these objects.

2.3 Reduction to 1D

Upon further restricting to spherically symmetric solutions, with spatial metric

ds23 = N2(ρ)dρ2 + r2(ρ)(dθ2 + sin2 θ dφ2) , (2.25)

the 3D non-linear sigma model reduces to the geodesic motion of a free particle on a real

cone R
+ ×M∗

3 over (2.8), with action

S1 =

∫
dρ

[
N

2
+

1

2N

(
r′2 − r2gmnφ

′mφ′n
)]

. (2.26)

The equation of motion of N forces the Hamiltonian to vanish,

HWDW = (p2
r) −

1

r2
gmnpφmpφn − 1 ≡ 0 (2.27)

The system reduces to geodesic motion on M∗
3, with momentum squared gmnpφmpφn = C2,

and motion along r with conformally invariant Hamiltonian (p2
r) − C2/r2 − 1 = 0. In

particular, the phase space is given by the symplectic quotient of the cotangent bundle

T ∗(R+×M∗
3) by the first class constraintHWDW = 0. Extremal black holes necessarily have

C2 = 0 (although this condition is not sufficient), which gives a further first class constraint.

By the usual Noether procedure, Killing vectors κm∂φm of M∗
3 yield conserved quan-

tities κmpφm for the geodesic motion on M∗
3. Of particular interest are the isometries

corresponding to shifts in the ζ, ζ̃, σ directions,

PΛ = ∂ζ̃Λ
− ζΛ∂σ , QΛ = −∂ζΛ − ζ̃Λ∂σ , K = ∂σ (2.28)

which satisfy the Heisenberg algebra

[
PΛ, QΣ

]
= −2δΛΣK . (2.29)

– 7 –
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Bona fide black holes have zero NUT charge K = 0, in which case PΛ, QΣ correspond to

the electric and magnetic charges of the black hole. In addition, the conserved quantity

associated to the Killing vector

H = −∂U − ζΛ∂ζΛ − ζ̃Λ∂ζ̃Λ
(2.30)

is the ADM mass, provided one enforces the condition

U = ζΛ = ζ̃Λ = σ = 0 (2.31)

at spatial infinity.

While the conserved charges PΛ, QΛ,K,H appear universally in reductions of Einstein-

Maxwell theories, in the present case there are additional conserved quantities due to the

isometries of the scalar moduli space in 4 dimensions. For nv = 0, the corresponding Killing

vectors read

Y0 = τ1∂τ1 + τ2∂τ2 +
1

2
ζΛ∂ζΛ − 1

2
ζ̃Λ∂ζ̃Λ

(2.32)

Y+ = ∂τ1 − ζ̃Λ∂ζΛ (2.33)

Y− =
1

2
(τ2

1 − τ2
2 )∂τ1 + τ1τ2∂τ2 +

1

2
ζΛ∂ζ̃Λ

(2.34)

and satisfy the Sl(2,R) commutation relations

[Y0, Y±] = ±Y± , [Y+, Y−] = Y0 . (2.35)

In addition to the bosonic terms displayed in (2.26), the one-dimensional Lagrangian

contains fermionic terms corresponding to the reduction of the N = 8 supersymmetric

sigma model in 3 dimensions along the sphere. This reduction was studied in detail in [5]

in the N = 4 case, and it was found that the reduction yields a one-dimensional sigma

model with the same number of (spinorial) supersymmetries as in 3 dimensions.3 Following

the same analysis, we find that the conditions for radially symmetric solutions to preserve

supersymmetry are given by

∃εµ ∈ C
8\{0} / ∀ a,A′ , pAa Γµ

A′A εµ = 0 and r′ = N . (2.36)

The first condition implies that any linear combination of the nv + 2 spinors pAa has zero

norm. Put differently,

pAapBbCAB = 0 . (2.37)

This condition is in fact equivalent to the existence of εµ such that (2.36) is obeyed.4

Clearly, it implies the extremality condition C2 = pAapBbCABδab = 0, but is considerably

3To be precise, the supersymmetric completion of the 1D sigma model is known only in the sector

involving M3 but not r and N .
4By an SO(8) rotation, the first spinor pA1 (rotated by the 8 × 8 upper-left block of ΩK) can be

chosen parallel to (1, 0, 0, 0, i, 0, 0, 0); the second can be chosen to lie along (0, 1, 0, 0, 0, i, 0, 0) up to the

addition of the first, etc. In this basis, it is easy to check that all pAa are annihilated by Γµ

A′A
εµ with

εµ =
√

2/2(1, 0, 0, 0, 0, 0, 0,−i), corresponding to Yi = 0 in (3.8) below.

– 8 –
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stronger. In section 3.4, we shall explain how it can be expressed as holomorphic geodesic

motion on the twistor space Z. For what concerns the second condition r′ = N , it is

consistent with the condition pr = ±1 following from the Hamiltonian constraint (2.27) at

extremality, but implies that only the choice of the upper sign in this relation is consistent

with supersymmetry.

2.4 Geodesics and one-parameter subgroups

Since the target space M∗
3 is a symmetric space, all geodesics correspond to one-parameter

subgroups in G3. A geodesic passing through the point e0 at τ = 0 with initial velocity p0

is given by

e(τ) = k(τ) · ep0τ/2 · e0 , M(τ) ≡ eT (τ) · e(τ) = eT0 · ep0τ · e0 (2.38)

where p0 is a non-compact (i.e. symmetric) element in g3, k(τ) is the unique element of K3

which brings e(τ) back to the Iwasawa gauge, and τ is the affine parameter. The g3-valued

conserved charge inherited from the right action of G3 is then given by

Q = −dM M−1 = −et0 p0 e
−t
0 . (2.39)

The velocity p0 may be traded for the Noether charge Q, but it should be noted that the

latter cannot be chosen independently from the initial position M0, since QM = MQT at

all times. In terms of Q, the geodesic motion is given by

e(τ) = k(τ) · e0 · e−QT τ/2 , M(τ) = e−Qτ/2 ·M0 · e−QT τ/2 (2.40)

The affine parameter τ is equal to the radial parameter ρ in the gauge N(ρ) = r2(ρ).

The motion of r(ρ) may be obtained by integrating the Hamiltonian constraint (2.27), and

depends only on p2
0.

The action of an element g of G3 takes the solution (2.40) to another solution with

Q → gTQg−T ,M0 → gTM0g. As a result, trajectories may be classified according to the

orbit of the matrix of Noether charges Q under the co-adjoint action of G3. Of special

interest are nilpotent orbits, i.e. those for which Qr = 0, Qr−1 6= 0 for some r ≥ 2 (the

degree r depends on representation in which Q is evaluated; here we consider the defining

representation of G3). Indeed, it was pointed out in [21] that BPS black holes in very

special N = 2 supergravity theories correspond to specific nilpotent orbits of degree 3.

Subsequently, it was shown that for very special N = 2 supergravity with one vector

multiplet, nilpotent orbits of degree 3 yield (in general non-BPS) extremal black holes in

4 dimensions [6]. It is straightforward to check that the argument in [6] extends to the

present case. It is therefore interesting to determine the allowed nilpotent orbits of degree

3 for G3 = SO(8, nv + 2).

Since Q is conjugate to p0 =

(
0 pAa

pAa 0

)
in the basis (2.16), the condition Q3 = 0

amounts to

pAapBbpCcCAB δbc = 0 . (2.41)
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This condition is clearly obeyed by BPS solutions, which satisfy the quadratic con-

straint (2.37). In fact, one may check explicitly that (for nv ≥ 2) the Noether charge

for BPS solutions lies in the orbit (34, 1nv−2) of the complexified group SO(10 + nv,C)

(see appendix B for a review of general facts about nilpotent orbits, and a table of the

low-dimensional nilpotent orbits of orthogonal groups). This follows from the fact, to be

discussed in section 3, that BPS trajectories can be lifted to holomorphic geodesics on the

twistor space Z, which is equal to the orbit (34, 1nv−2) via (B.1). This orbit is the ”largest”

nilpotent orbit of degree 3 (amongst orbits with dimension less than O(8nv)), in the sense

that it intersects the closure of any orbit of degree 3 (as apparent on figure 1). This identi-

fication implies that the phase space of 1/4-BPS solutions in N = 4 supergravity with nv

vector multiplets is 8nv +28 dimensional,5 much larger than the dimension 4nv +26 of the

phase space of 1/2-BPS solutions in a N = 2 supergravity with the same number nv + 6

of vector fields [5]. The extra degrees of freedom correspond to the nv hypermultiplets

coming from the decomposition of the nv N = 4 vector multiplets. The twistor techniques

of the next section in principle allow to find the most general 1/4-BPS solution, although

we fall short of this goal due to technical difficulties explained in section 3.4.

For what concerns non-BPS extremal black holes, they correspond to solutions of (2.41)

which do not satisfy (2.37). Since there exist (at least) two different real nilpotent orbits

of type (34, 1nv−2), related by an outer automorphism of SO(8, nv +2), it is natural to con-

jecture that such a transformation will map BPS solutions to non-BPS extremal solutions.

Finding the general form of these non-BPS solutions is outside the scope of this paper.

3. Twistorial techniques for N = 4 BPS black holes

We now return to the supersymmetry condition (2.36), and introduce geometric methods

which allow to implement these constraints, both at a classical and quantum level in a

convenient way. We work with the original Riemannian space (2.9), and perform analytic

continuations at the end.

As emphasized in [5], it is expedient to eliminate the existence quantifier in (2.36) by

enlarging the phase space with the complex Killing spinor εµ. Since the latter is always

of zero norm and defined up to the action of C
×, it is best viewed as an element of the

complex symmetric space

F =
SO(8,R)

U(4)
∼ SO(8,R)

SO(2) × SO(6)
(3.1)

As we explain in more detail below, this equality reflects the fact that Cartan pure spinors

in 8 dimensions are just zero norm spinors. Remarkably, it is possible to fiber6 F over M3

such that the total space Z admits an integrable complex structure [12]: this is achieved

by “cancelling the SO(8) factors”, namely by considering the homogeneous (but not sym-

5This is before enforcing the first class constraint K = 0.
6Note that unlike the quaternionic-Kähler case, the fiber is not the sphere of almost complex structures

S6, but a complexification thereof
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metric) complex space Z ≡M3\G3

Z =
SO(8, nv + 2,R)

U(1) × SU(4) × SO(nv + 2)
∼ SO(8, nv + 2,R)

SO(2) × SO(6) × SO(nv + 2)
. (3.2)

The integrable complex structure is afforded by the U(1) = SO(2) factor in the denomina-

tor. Moreover, as we show below, the BPS conditions (2.36) guarantee that the geodesic

motion on M3 can be lifted to a holomorphic curve on Z. This construction parallels the

N = 2 case discussed in [3], upon replacing the complex projective twistor line CP 1 with

the Grassmannian F .

3.1 Parametrizing the fiber

In a basis where the invariant metric takes the off-diagonal block form η8 =

(
I4

I4

)
, a

coset representative of SO(8,R) may be chosen as

eF =

(
I4 0

X̄ I4

)
·
(

1/
√

1 −XX̄ 0

0
√

1 − X̄X

)
·
(

I4 X

0 I4

)
. (3.3)

where XIJ (I, J = 1 . . . 4) is a 4×4 antisymmetric complex7 matrix X. This decomposition

realizes the Harish-Chandra embedding K\G(R) →֒ P (C)\G(C) where G(R) = SO(8,R)

and P (C) is the parabolic subgroup of lower block-triangular matrices of the form

(
∗
∗ ∗

)
,

and guarantees that X are complex coordinates on F . Moreover, it makes explicit the

holomorphic action of G(C) on F , by right multiplication on (3.5) followed by left multipli-

cation by an element of P (C). On general grounds [26], a Kähler potential for the invariant

metric on F is given by the logarithm of a character of K(C) = GL(4,C) evaluated on the

block-diagonal component in the Harish-Chandra decomposition (3.3),

K(X, X̄) = log det(1 −XX̄) . (3.4)

The first four rows of the right-most matrix in (3.3) define an isotropic8 4-plane C
4 =

(I4 |X) inside C
8. Such isotropic planes are also known as projectivized pure spinors in

Cartan’s sense.

On the other hand, in a basis where the invariant metric takes the form η̃8 =




1

I6

1


,

a coset representative of SO(8,R)/SO(2) × SO(6) may be chosen as

ẽF =




1

Ȳ i
I6

−1
2

∑
Ȳ 2

k −Ȳi 1


 ·



e−K(Y,Ȳ )/2

[A(Y, Ȳ )]−1/2

eK(Y,Ȳ )/2


 ·




1 Yi −1
2

∑
Y 2

k

I6 −Yi

1




(3.5)

7Since we are dealing with the compact form of SO(8), the matrix representation in this basis has to

be complex. The split form SO(4, 4) would instead be obtained by taking X and X̄ as independent real

variables.
8i.e. a 4-plane of zero norm vectors: (I4 |X)T η8(I4 |X) = 0 since X = −XT .

– 11 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
8

where the scalar eK(Y,Ȳ ) and the 6 × 6 matrix A(Y, Ȳ ) are determined in terms of the

complex coordinates Yi and their complex conjugate Ȳi:

K(Y, Ȳ ) =
1

2
log

(
1 +

∑

i

YiȲi +
1

4

(∑

i

Y 2
i

)(∑

i

Ȳ 2
i

))
, (3.6)

Aij(Y, Ȳ ) = δij + eK
[
YiȲj − Yj Ȳi −

1

2
YiYj

(∑
Ȳ 2

k

)

−1

2
ȲiȲj

(∑
Y 2

k

)
+ YiȲj

(∑
YkȲk

)]
. (3.7)

Again, K(Y, Ȳ ) provides the Kähler potential for the SO(8)-invariant Kähler metric on

F . This time, the first row (1, Yi,−1
2

∑
Y 2

k ) in the right-most matrix in (3.5) provides the

most general null vector for the metric η8, up to a C
× action. Thus, in eight dimensions

Cartan pure spinors are indeed the same as projectivized null vectors.

Based on this observation, it is natural to identify this null vector with the Killing

spinor εµ,

εµ =

(
2 −∑ Y 2

k

2
√

2
, Yi,

2 +
∑
Y 2

k

2i
√

2

)
,
∑

µ

ε2µ = 0 . (3.8)

To see the relation to the coordinates XIJ note that for a fixed null vector εµ, the equations

∀A′ , εµ Γµ
A′A p

A = 0 (3.9)

select an isotropic 4-plane in the 8-dimensional space of the spinors pA. In fact, using

the explicit representation of the SO(8) Dirac matrices given in appendix A, we have the

rank 4 matrix

εµ Γµ
A′A =

(
i
√

2 I4
∑

k YkΣ
k

∑
k ỸkΣ

i − i√
2

∑
k Y

2
k

)
(3.10)

where Σi are SO(6) Sigma matrices. Identifying the first four rows of this matrix with the

isotropic 4-plane (I4 |X)IA leads to the relation between the X and Y coordinates,

XIJ = − i√
2
Yi Σ

i
IJ . (3.11)

It may be checked explicitly that the Kähler potentials (3.6) and (3.4) agree, up to a

Kähler transformation.

3.2 Bottom-up construction of the twistor space

The homogeneous complex space Z defined in (3.2) may be parameterized by relaxing the

Iwasawa gauge in (2.11), and introducing a coset representative êF of the fiber U(4)\SO(8),

eZ = êF · e8,nv+2 , (3.12)

where êF is obtained by embedding eF inside the maximal compact subgroup SO(8) ×
SO(nv + 2) of G3,

êF = Ω ·




I4 0 0

0 Inv+2 0

X̄ 0 I4


 ·




1/
√

1 −XX̄ 0 0

0 Inv+2 0

0 0
√

1 − X̄X


 ·




I4 0 X

0 Inv+2 0

0 0 I4


 ·Ω−1 . (3.13)
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Here, the matrix

Ω =




1
2 0 0 0 0 1√

2
0 1

2 0 0 0

− i
2 0 0 0 0 0 1√

2
i
2 0 0 0

0 1√
2

0 0 0 0 0 0 1√
2

0 0

0 0 1√
2

0 0 0 0 0 0 1√
2

0

0 0 0 1√
2

0 0 0 0 0 0 1√
2

0 − i√
2

0 0 0 0 0 0 i√
2

0 0

0 0 − i√
2

0 0 0 0 0 0 i√
2

0

0 0 0 − i√
2

0 0 0 0 0 0 i√
2

0 0 0 0
√

2 Inv 0 0 0 0 0 0
1
2 0 0 0 0 − 1√

2
0 1

2 0 0 0

− i
2 0 0 0 0 0 − 1√

2
i
2 0 0 0




(3.14)

provides the change of basis from the metric (2.10) to the metric

η̂8,nv+2 =




I4

−Inv+2

I4


 = ΩT η8,nv+2 Ω (3.15)

Block-diagonal matrices of the form



A 0 0

0 B 0

0 0 A−T


 , A ∈ U(4), , B ∈ SO(nv + 2) (3.16)

generate a U(1)×SU(4)×SO(nv +2) subgroup of the maximal compact subgroup SO(8)×
SO(nv + 2). It is important to note that the U(4) factor inside SO(8) is distinct from

the U(1) × SO(6) 4-dimensional R-symmetry group. These two groups only share a U(3)

common subgroup, which is manifest with our choice of Ω in (3.14).

Now, consider the decomposition of the Lie algebra of SO(8, nv + 2) under U(1) ×
SU(4) × SO(nv + 2),

6̄|−2 ⊕ (4̄, nv + 2)|−1 ⊕ [SU(4) ⊕ U(1) ⊕ SO(nv + 2)]0 ⊕ (4, nv + 2)|1 ⊕ 6|2 (3.17)

where the subscript indicates the U(1) charge. Here, in contrast to the 5-grading (2.12), the

Cartan involution exchanges the spaces of positive and negative charge. The right-invariant

one-form θZ = Ω−1 · deZe−1
Z · Ω decomposes along each summand in (3.17) as

θZ = θ̄Z
IJ T̄

IJ + θ̄Z
IaT̄

Ia + (θZ
SU(4) + θZ

U(1) + θZ
SO(nv+2)) + θZ

IaT
Ia + θZ

IJT
IJ (3.18)

where the generators T̄ IJ , T̄ Ia, T Ia, T IJ have charge −2,−1, 1, 2 respectively. On general

grounds, the positive charge components θIJ , θ
Z
Ia correspond to (1,0) forms on Z, while their

complex conjugate θ̄Z
IJ , θ̄

Z
Ia are (0,1) forms. In the basis corresponding to the metric (3.15),
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the U(1) factor is generated by the diagonal matrix diag(I4, 0nv+2,−I4), and therefore

θZ
IJ , θ

Z
Ia are just the 4 × 4 and 4 × (nv + 2) blocks in the upper triangular part of θZ ,

θZ =



θZ
SU(4) + θZ

U(1) θZ
Ia θZ

IJ

θ̄Z
Ia θZ

SO(nv+2) θZ
Ia

θ̄Z
IJ , θ̄Z

Ia −(θZ
SU(4))

† − θZ
U(1)


 (3.19)

In terms of the components pAa, θAB of the right-invariant one-form (2.16) on the base

M3, the (1,0) forms read

θZ
Ia = V (I4 |X)IA p

Aa , (3.20)

θZ
IJ = V

(
dX + θ(2) + θ(4)X −Xθ(1) −Xθ(3)X

)
V T (3.21)

where

V = (1 −XX̄)−1/2 (3.22)

and θ(k) are the 4 × 4 blocks in the SO(8) connection,

θAB =

(
θ
(1)
IJ θ

(2)
IJ

θ
(3)
IJ θ

(4)
IJ

)
. (3.23)

Similarly, the (0, 1) invariant forms may be obtained from the lower triangular part of θZ ,

or by complex conjugation from the (1, 0) forms, using the fact that θ̄(2) = θ(3), θ̄(1) = θ(4):

θ̄Ia
Z = V̄ (X̄ |I4)IA p

Aa, (3.24)

θ̄IJ
Z = V̄

(
dX̄ + θ(3) + θ(1)X̄ − X̄θ(4) − X̄θ(2)X̄

)
V̄ T ≡ dX̄ + P (3.25)

Giving the (1,0) and (0,1) forms uniquely specify an almost complex structure J on Z.

Since linear combinations of (1,0) forms stay of (1,0) type, we may set V = 1 in (3.20)

and (3.24) , and take as a basis of (1,0) forms

DXIJ ≡ dX + θ(2) + θ(4)X −Xθ(1) −Xθ(3)X ≡ dX + P , (3.26)

DZIa ≡ (I4 |X)IA p
Aa . (3.27)

In the next subsection, we shall show that J is in fact integrable. Observe that the

(1,0)-forms DZIa are linear combinations of the cotangent forms pAa whose coefficients are

holomorphic functions on the fiber, while the (1,0)-forms DX are obtained by adding the

”projectivized SO(8) connection” P to the holomorphic differentials dX on the fiber. This

directly parallels the twistor construction for quaternionic-Kähler spaces.

Finally, a family of invariant Hermitian metrics on Z may be constructed by forming

SU(4) × SO(nv + 2) invariant quadratic combinations of the (1,0) and (0,1) forms,

ds2 = θZ
IJ θ̄

IJ
Z + ν θZ

Iaθ̄
Ia
Z . (3.28)

The parameter ν can be fixed by requiring that the metric is Kähler (see section 3.3).
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3.3 Top-down construction of the twistor space

We now describe an alternative construction of Z, which makes it manifest that the almost

complex structure J is integrable, and that Z admits an invariant Kähler metric. As in

our discussion of the Kähler metric on the fiber in section 3.1, and in analogy with [13],

we rely on the Harish-Chandra embedding M3\G3(R) →֒ P3(C)\G3(C) where P3(C) is the

parabolic subgroup of lower block-triangular matrices in the basis where the metric takes

the off-diagonal form

η8,nv+2 =




I4

−Inv+2

I4


 , P3(C) =



∗
∗ ∗
∗ ∗ ∗


 (3.29)

This embedding is achieved by decomposing any element g ∈ G3 as a product

g =



∗
∗ ∗
∗ ∗ ∗


 ·




I4 Z X̃
0 Inv+2 ZT

0 0 I4


 (3.30)

where X̃ ≡ X + 1
2ZZT is an 4 × 4 antisymmetric complex matrix and Z is a 4 × (nv + 2)

complex matrix. The map g ∈ M3(R)\G3(R) →֒ (X ,Z) ∈ P3(C)\G3(C) is well-defined

since a left-multiplication by an element of K(R) only affects the lower triangular part

of the decomposition, and it is injective since P3(C)\G3(C) ∩M3(R) consists only of the

identity. In particular, choosing g = Ω−1eZΩ where eZ is the coset representative in (3.12),

we can express (X ,Z) as a function of the coordinates on the base U, τ i, τ̄ i, ζΛ, ζ̃Λ, σ and

the complex coordinates XIJ on the fiber (the resulting expressions turn out to be very

cumbersome and are best omitted here). Note that (X ,Z) is independent of X̄IJ , as the

two X̄-dependent factors in (3.13) only affect the lower triangular part. Thus, the Harish-

Chandra embedding provides a holomorphic parametrization of the”twistor lines”, i.e. the

fibers of the projection Z → M3. This map was also referred to as ”the twistor map” in [3].

Conversely, an element of (X ,Z) ∈ P3(C)\G3(C) may be mapped into an element of

G3(R)

eZ =




I4 0 0

Z̄ Inv+2 0
¯̃X Z̄T

I4


 ·



A−1/2 0 0

0 B−1/2 0

0 0 (AT )1/2


 ·




I4 Z X̃
0 Inv+2 ZT

0 0 I4


 (3.31)

where A and B are 4 × 4 and (nv + 2)2 matrices afforded by the decomposition




I4 Z X̃
0 Inv+2 ZT

0 0 I4


 ·




I4 0 0

Z̄ Inv+2 0
¯̃XZ̄ Z̄T

I4


 =



∗
∗ ∗
∗ ∗ ∗


 ·



A 0 0

0 B 0

0 0 A−T


 ·



∗ ∗ ∗
∗ ∗
∗


 . (3.32)

The Iwasawa decomposition of eZ then allows to express the coordinates U, τ i, τ̄ i, ζΛ, ζ̃Λ,

σ,X, X̄ on M3 × F in terms of (X ,Z) and their complex conjugates. This reciprocal

map was termed ”covariant c-map”, or superconformal quotient, in [3]. Again, this map
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is in principle computable, but the resulting expressions are too cumbersome to be of any

practical use.

While only the real group G3(R) acts on the base M3, the action on the twistor space

Z can be extended to the complexified group G3(C): it acts by right-multiplication on

the coset representative (3.30), followed by a left-multiplication by an appropriate lower

triangular matrix so as to return to the strictly upper triangular gauge. The complex

coordinates (X ,Z) are adapted to the holomorphic action of the nilpotent group of strictly

upper-block diagonal matrices, in the sense that no compensating left-action is needed.

This action is generated by the vector fields

Ea
I = ∂ZIa + ǫIJKLZJa∂XKL

, EIJ = ∂XIJ
(3.33)

which satisfy the Heisenberg-type commutation relations

[
Ea

I , E
b
J

]
= ǫIJKL δabE

KL . (3.34)

For applications to black hole physics, it would be desirable to have complex coordinates

adapted to the Heisenberg algebra (2.29), which corresponds to the electric, magnetic

and NUT charges. As for the SU(2, 1) case studied in [13], it should be possible to ob-

tain this change of variable by taking the limit U → −∞, τ2 → 0 in the twistor map.

We note however that for nv = 0, there is an obvious holomorphic action of G3(R) on

14 complex variables, adapted to Heisenberg algebra (2.29), corresponding to the ”fake”

Harish-Chandra decomposition in the original basis (2.10),




∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




·




1 β ξ −1
2ξξ

t α− 1
2ξξ̃

t

0 1 ξ̃ −α− 1
2ξξ̃

t −1
2 ξ̃ξ̃

t

I6 −ξt −ξ̃t

1 0

−β 1




(3.35)

where α and β are two complex variables, and ξΛ, ξ̃Λ are two complex vectors in C
6. It

would be interesting to find the change of variable from the complex coordinates (X ,Z)

to (ξΛ, ξ̃Λ, α, β).

An Hermitian metric on Z can be obtained by computing the right-invariant form, pro-

jecting out the M3(C) part, and taking M3-invariant quadratic combinations as in (3.28).

The strictly upper-triangular components of dg · g−1 provide right-invariant (1,0) forms

θZ
IJ = Ṽ

(
dX +

1

2
ZdZT − 1

2
dZZT

)
Ṽ T , θZ

Ia = Ṽ dZ . (3.36)

where

Ṽ = A−1/2 (3.37)

Setting Ṽ = 1 in (3.36), we obtain a basis of holomorphic (i.e. ∂̄-closed) (1,0) forms,

DX ≡ dX +
1

2

(
ZdZT − dZZT

)
, DZ = dZ . (3.38)
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The antisymmetric matrix of holomorphic 1-forms DX plays the rôle of the holomorphic

contact distribution in the quaternionic-Kähler case. Note that under a right-action of

G(C), DXIJ transforms by an element of GL(4,C), corresponding to the block diagonal

component of the compensating lower triangular matrix required to restore the upper trian-

gular gauge. In the quaternionic-Kähler case, this issue can be circumvented by introducing

a new C
× valued variable t, and considering the one-form tDX : the rescaling of DX can

be reabsorbed by a rescaling of t, leading to a globally defined holomorphic one-form on

C
× ×Z, whose exterior derivative is the holomorphic two-form Ω on the hyperkähler cone

of M3 [27]. In the present case, one may similarly introduce 6 new variables tIJ and con-

sider the globally defined holomorphic two-form Ω = d(tIJXIJ). We shall return to this

possibility momentarily.

In the above construction of the metric (3.28), it is difficult to fix the coefficient ν

such that the metric is Kähler. However, according to the general prescription of [26], we

know that a Kähler potential for an invariant metric on Z is given by the logarithm of a

character of M3(C) evaluated on the block diagonal part in the decomposition (3.32):9

KZ(X ,Z, X̄ , Z̄) = log det

[
I4 + ZZ̄ + X̃ ¯̃X

T
]

(3.39)

Comparison to the metric (3.28) fixes ν = −1. It would be interesting to check whether the

metric is Kähler-Einstein, as in the case of twistor spaces of quaternionic-Kähler spaces.

Given the transformation properties of the kernel matrix A(X ,Z, X̄ , Z̄), it is also

natural to consider higher dimensional spaces with Kähler potential

K(t,X ,Z, t̄, X̄ , Z̄) = t̄ · R
[
I4 + ZZ̄ + X̃ ¯̃X

T
]
· t (3.40)

where t transforms in some finite dimensional representation R of GL(4,C). For t = tIJ in

the 6-dimensional antisymmetric representation, combining this result with the construc-

tion in the paragraph below (3.38), we obtain a 8(nv+5) real-dimensional Kähler space with

a (2,0) holomorphic form and a homothetic Killing vector. It is natural to conjecture that

this provides the natural hyperkähler metric [28] on a complex nilpotent co-adjoint orbit

of SO(nv + 10,C) associated to the partition (24, 1nv+2), of complex dimension 4(nv + 5).

3.4 Supersymmetry and holomorphy

We now return to the physical motivation for this geometric construction, the supersym-

metry conditions (2.36). As we discussed below (3.9), there is an equivalence

εµ Γµ
A′A p

Aa = 0 ⇔ (I4|X)IA p
Aa = 0 , (3.41)

provided the null vector εµ is related to XIJ via (3.8), (3.11). Moreover, in (3.26), we

have established that the one-forms DZIa = (I4|X)IAp
Aa are (1,0) forms with respect

to the complex structure on Z. Therefore, if we lift the geodesic motion on M3 to the

9Note that KZ reduces to the Kähler potential (3.4) on the fiber F at Z = 0.
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twistor space Z by requiring that at every point, DXIJ = 0, we conclude that supersym-

metric geodesics on M3 have a tangent vector of type (0,1) at every point, and therefore

correspond to an anti-holomorphic curves ρ : C → Z. In practice, this means that the

holomorphic coordinates zi are constant along the flow, while the anti-holomorphic coor-

dinates z̄ ī evolve10 in such a way that the gradient of the Kähler potential grows linearly

with the affine parameter [3]11

∂ziK = ciτ + di . (3.42)

Moreover, the BPS constraints (2.37), re-expressed as DZIa = DXIJ = 0, now manifestly

form a system of first class constraints, as the Lie bracket of two (anti)holomorphic vectors

is necessarily (anti)holomorphic. As in the N = 2 case [5], we can therefore identify the

1/4-BPS phase space as the twistor space Z, equipped with its Kähler form.

In order to make the best use of this geometric statement, it would be desirable to con-

struct a coordinate system on Z adapted to the Heisenberg symmetries (2.29). This would

enable us to determine the most general 1/4-BPS spherically symmetric solutions in N = 4

supergravity, and also to compute the exact BPS black hole wave function as a Penrose

transform of a holomorphic wave-function on Z, along the lines of [3]. While we have been

unable to carry out this computation, in the next subsection we construct some holomor-

phic functions on Z which provide BPS wave functions for solutions with certain charges.

3.5 Some holomorphic functions on Z

In this section, we construct some holomorphic functions on Z in the coordinate system

U, τ i, τ̄ i, ζΛ, ζ̃Λ, σ,X, X̄ adapted to the fibration F → Z → M3. For ease of notation, we

denote the entries in XIJ as

X =




0 y1 y2 y3

−y1 0 x3 −x2

−y2 −x3 0 x1

−y3 x2 −x1 0


 (3.43)

and similarly for X̄ .

Our first observation is that x1, x2, x3 and y2/y1, y3/y1 are holomorphic functions on

Z. This follows from the fact that their differentials are of (1,0) type,

dx1 = Dx1 +
1√
2

(−y3DZ31 + iy3DZ32 + y2DZ41 − iy2DZ42) (3.44)

dx2 = Dx2 +
1√
2

(y3DZ21 − iy3DZ22 − y1DZ41 + iy1DZ4,2)

dx3 = Dx3 +
1√
2

(−y2DZ21 + iy2DZ22 + y1DZ31 − iy1DZ32)

10Due to the analytic continuation from M3 to M∗
3, the complex coordinates zi should be treated as

independent variables.
11This follows directly from the geodesic equation z̈i + Γi

jkżj żk = 0, given that the Christoffel symbol

Γi
jk has no mixed holomorphic/anti-holomorphic components.
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d

(
y2

y1

)
=

2y1Dy2 − 2y2Dy1 +
√

2(y2(DZ21 + iDZ22) − y1(DZ31 + iDZ32))

2y2
1

d

(
y3

y1

)
=

2y1Dy3 − 2y3Dy1 +
√

2(y3(DZ21 + iDZ22) − y1(DZ41 + iDZ42))

2y2
1

Secondly, we note that the contraction of any Killing vector κm∂φm with the holomorphic

contact distribution DXIJ yields a 4 × 4 antisymmetric matrix of holomorphic functions,

since G3(R) acts holomorphically on Z. Moreover the one forms, DXIJ and DXIJ =

DXIJ,mdφ
m are related to each other by a GL(4,C) transformation,

DX = V −1Ṽ ·DX · Ṽ TV −T . (3.45)

Thus, for two Killing vectors κm and κ′m, the combination

〈κ, κ′〉 ≡ ǫIJKLκmDXIJ,m κ′nDXKL,n (3.46)

is holomorphic, up to an overall factor independent of κ and κ′. It may be checked explicitly

that the product

y−1
1 e−2U 〈κ, κ′〉 (3.47)

is holomorphic for one choice of κ and κ′, and therefore for any pair of Killing vectors.

Different pairs (κ, κ′) may not necessary give independent holomorphic functions however:

for nv = 0, an explicit computation shows that a linear basis of holomorphic functions ob-

tained in this way, using the Killing vectors PΛ, QΛ,K,H, Y0, Y± introduced in section 2.3,

may be chosen as

〈PΛ,H〉 , 〈QΛ,H〉, 〈PΛ, QΣ〉 = −〈QΛ, P
Σ〉 , 〈H,H〉 . (3.48)

The remaining non-vanishing inner products can be expressed in terms of this basis as

〈PΛ, Y0〉 = 〈PΛ,H〉 , 〈QΛ, Y0〉 = −〈QΛ,H〉 , 〈Y0, Y0〉 = 〈Y+, Y−〉 = −〈H,H〉 (3.49)

This provides non-trivial examples of holomorphic functions on Z. Unfortunately, we have

not managed to find eigenfunctions of the charge generators PΛ, QΛ,K. Instead, one may

check that the action of the Killing vectors on the holomorphic functions (3.48) is given by

PΛ · 〈PΣ,H〉 = 0 , QΛ · 〈QΣ,H〉 = 0 , K · 〈PΛ,H〉 = 0 , (3.50)

K · 〈QΣ,H〉 = 0 , Y+ · 〈PΛ,H〉 = 0 , Y+ · 〈QΣ,H〉 = 0 , (3.51)

PΛ · 〈QΣ,H〉 = 〈PΛ, QΣ〉 , QΛ · 〈PΣ,H〉 = −〈PΛ, QΣ〉 . (3.52)

4. Discussion

In this work, we have analyzed 1/4-BPS spherically symmetric, stationary configurations in

D = 4, N = 4 supergravity, by dimensional reduction to one (radial) dimension. In parallel

with the treatment of BPS black holes in D = 4,N = 2 supergravity [3, 5], we have shown

that such configurations correspond to supersymmetric geodesics on the three-dimensional
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symmetric moduli space M3. This provides a powerful technique for obtaining new black

hole solutions in 4 dimensions. Indeed, we have found that the phase space of BPS solutions

is given by a degree 3 nilpotent orbit in SO(8, 2 + nv), whose real dimension 8nv + 28 is

twice as large as expected by extrapolating the results for N = 2 black holes. We have

also found indications that the phase space of non-BPS extremal black holes is given by a

nilpotent orbit with the same complexification as in the BPS case, but related by an outer

automorphism of the real group SO(8, 2+nv). It would be interesting to study this further.

In addition, we have shown that supersymmetric geodesics on M3 can be lifted to

holomorphic curves on a homogeneous complex space Z, the twistor space (3.2). In contrast

to the N = 2 case, the fiber does not parametrize the sphere of complex structures S6,

but rather the space SO(8)/U(4) of isotropic 4-planes in C
8. Moreover, Z does not carry a

holomorphic contact form, but rather a 4×4 antisymmetric matrix of holomorphic contact

forms. This complication has so far prevented us from constructing complex coordinates

adapted to the Heisenberg symmetries of the problem, which were instrumental in [3, 5] for

obtaining the BPS radial wave function for a black hole with fixed electric and magnetic

charges. Nevertheless, there is no doubt that such a system can be constructed, and that

a Penrose-type correspondence can be set up between holomorphic functions on Z and

solutions of the second order partial differential equation (CAB∇Aa∇Bb + λδab)Ψ = 0,

which follows by quantizing (2.37). Irrespective of applications to black hole physics, this

correspondence may be used to compute instanton corrections in 3 dimensions, provided

one can identify a coupling in the low energy effective action governed by the same partial

differential equation.
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A. SO(8) gamma matrices

In this section, we describe our conventions for the SO(6) and SO(8) Dirac matrices used

in the text. We start with the 4 × 4 SO(6) Sigma matrices Σi (i = 1 . . . 6)

Σ1 =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 , Σ2 =




0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0


 , Σ3 =




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


 , (A.1)

Σ4 =




0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0


 , Σ5 =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 , Σ6 =




0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0


 , (A.2)
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corresponding to the SO(6) Dirac matrices in the Weyl representation,

Γi =

(
0 Σ̃i

Σi 0

)
, {Γi,Γj} = 2δijI8 (A.3)

where Σ̃i = (−1)iΣi = Σ†
i . This is extended to a representation of the Clifford algebra of

SO(7) by adding Γ7 = iΓ1Γ2Γ3Γ4Γ5Γ6. The charge conjugation matrix is given by

C = −iΓ2Γ4Γ6 =

(
0 I4

I4 0

)
, CΓT

i C
−1 = −Γi . (A.4)

The matrices Γi,Γ7 supplemented with Γ0 = iI8, can then serve as Sigma matrices12 Γµ
A′A

(µ = 0 . . . 7) for a chiral representation of the Clifford algebra of SO(8). In particular, the

Lorentz generators Γµν
AB in the spin 8S representation of SO(8) are given by

Γµν = [Γµ,Γν ] , Γµ0 = 2iΓµ, Γ0µ = −2iΓµ (µ, ν 6= 0) (A.5)

satisfying the SO(8) algebra,

[Γµν ,Γρσ] = −4 (δµρΓνσ + δνσΓµρ − δνρΓµσ − δµσΓνρ) (A.6)

Similarly, the Lorentz generators Γ̃µν
AB in the spin 8C representation of SO(8) can be con-

structed as

Γ̃i =

(
0 Σi

Σ̃i 0

)
, Γ̃0 = iI8 , Γ̃7 = iΓ̃1Γ̃2Γ̃3Γ̃4Γ̃5Γ̃6 (A.7)

C̃ = −iΓ̃2Γ̃4Γ̃6 =

(
0 I4

I4 0

)
(A.8)

Γ̃µν = [Γ̃µ, Γ̃ν ] , Γ̃µ0 = 2iΓ̃µ, Γ̃0µ = −2iΓ̃µ (µ, ν 6= 0) (A.9)

We note that the triality automorphism is implemented by taking an antisymmetric

matrix ΩV
IJ in the vector representation to matrices ΩS

AB or ΩC
A′B′ in the spinor represen-

tation via

ΩV
µν Γµν

AB = ΩS
AB , ΩV

µν Γ̃µν
A′B′ = ΩC

A′B′ , (A.10)

B. Nilpotent orbits in orthogonal groups

In this appendix, we briefly review some general facts about nilpotent co-adjoint orbits,

before restricting to orthogonal groups. The proofs of all these results can be found in [29].

Complex nilpotent orbits in G are classified by conjugacy classes of homomorphisms

su(2) → g, i.e. triplets e, f, h of elements in the Lie algebra g of G satisfying the SU(2)

algebra, [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . Under the adjoint action of this SU(2), g

decomposes into a sum of finite-dimensional representations. g may be further decomposed

12We keep the same symbol Γ to avoid unnecessary extra notation.
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as a sum of eigenspaces of the Cartan generator h, g =
∑

i=−i0...i0
gi. The complex nilpotent

orbit is isomorphic to P\G, where P is obtained by exponentiating p =
∑

i≤0 gi. The real

dimension of the nilpotent orbit is given by dim g−dimg0−dim g1 = 2(dim g−dimp). The

set of all nilpotent orbits admits a partial ordering, the closure ordering, whereby e < e′

if e′ lies in the closure of the nilpotent orbit through e′. All nilpotent orbits of a given

group G can be displayed in a Hasse-type diagram, with vertically increasing dimensions

and links corresponding to the closure ordering.

For G = GL(N,C), complex nilpotent orbits are in one-to-one correspondence with

partitions of N , i.e. Young tableaux with N boxes. The partition corresponds to the

Jordan normal form of the nilpotent element e, or to the dimensions of the representations

appearing in the decomposition of (g) under SU(2). For G = SO(N,C), complex nilpotent

orbits are in one-to-one correspondence with Young tableaux with N boxes such that lines

of even length always occur in pairs. WhenN is even, ”very even” partitions, corresponding

to configurations with only rows of even length, are an exception to this rule, as they label

two distinct orbits. For G = GL(N,C) or G = SO(N,C), the closure ordering e ≤ e′

holds whenever for all p = 1 . . . N , the number of boxes in the first p columns of the Young

tableau associated to e is less than the number of boxes in the first p columns of the Young

tableau associated to e′ (see [30] for a physical realization of this ordering).

In table 1, we list the complex nilpotent orbits of G = SO(nv +10,C) whose dimension

scales as knv with k ≤ 8 when nv → ∞;13 their closure relations are displayed in the

Hasse diagram in figure (1). The table reveals two complex nilpotent orbits whose real

dimension equals the real dimension 8nv + 28 of the twistor space Z. The nilpotent orbit

(5, 24, 1nv−3) corresponds to a weight decomposition ranging from i = −6 to i = 6 and

bears no relation with Z. In contrast, the nilpotent orbit (34, 1nv−2) gives rise to the same

5-grading as in (3.17),

g = 6|−4 ⊕ 4(nv + 2)|−2 ⊕
1

2
(n2

v + 3nv + 34)|0 ⊕ 4(nv + 2)|2 ⊕ 6|4 (B.1)

and so is identical to the twistor space Z (3.2). It may be worthwhile noting that the orbit

(24, 1nv+2) yields the same grading, but with half the charge; as a result its dimension is

smaller by 4(nv + 2). On the other hand, the orbit (32, 1nv+4), of real dimension 4nv + 26,

gives the same 5-grading as (2.12),

g = 1|−4 + (2nv + 12)|−2 +
1

2
(n2

v + 11nv + 38)|0 + (2nv + 12)|2 ⊕ 1|4 (B.2)

which is adapted to the complex structure on the twistor space of the quaternionic-Kähler

manifold SO(4, nv + 6)/SO(4)SO(nv + 6). Again, the orbit (22, 1nv+6) gives the same

grading but with half the charge. Finally, the orbit (3, 1nv+7) of real dimension 2(nv + 8)

gives a three-grading

g = (nv + 8)|−2 ⊕
1

2
(n2

v + 15nv + 58)|0 ⊕ (nv + 8)|2 (B.3)

adapted to the complex structure on SO(2, nv + 8)/SO(2) × SO(nv + 8).
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Figure 1: Hasse diagram for the nilpotent orbits in table 1.

We now turn to the classification of real nilpotent orbits, which is rather more subtle.

For real orthogonal groups SO(p, q,R), nilpotent orbits are classified by Young tableaux

with N = p + q boxes as above, with additional assignments of a sign ± to each box such

13It is easy to see that the numbers of nilpotent orbits whose dimension scales as knv is given by the

coefficient of qk in the Taylor expansion of 1/
Q∞

n=0
(1 − q4n+2)(1 − q2n+2) around q = 0.
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(22, 1nv+6) : 2nv + 14

(3, 1nv+7) : 2nv + 16

(24, 1nv+2) : 4nv + 20

(3, 22, 1nv+3) : 4nv + 24

(32, 1nv+4) : 4nv + 26

(5, 1nv+5) : 4nv + 28

(26, 1nv−2) : 6nv + 18

(3, 24, 1nv−1) : 6nv + 24

(32, 22, 1nv ) : 6nv + 28

(33, 1nv+1) : 6nv + 30

(42, 1nv+2) : 6nv + 32

(5, 22, 1nv+1) : 6nv + 32

(5, 3, 1nv+2) : 6nv + 34

(7, 1nv+3) : 6nv + 36

(28, 1nv−6) : 8nv + 8

(3, 26, 1nv−5) : 8nv + 16

(32, 24, 1nv−4) : 8nv + 22

(33, 22, 1nv−3) : 8nv + 26

(34, 1nv−2) : 8nv + 28

(5, 24, 1nv−3) : 8nv + 28

(42, 22, 1nv−2) : 8nv + 30

(42, 3, 1nv−1) : 8nv + 32

(5, 3, 22, 1nv−2) : 8nv + 32

(5, 32, 1nv−1) : 8nv + 34

(7, 22, 1nv−1) : 8nv + 36

(52, 1nv ) : 8nv + 36

(7, 3, 1nv ) : 8nv + 38

(9, 1nv+1) : 8nv + 40

Table 1: Complex nilpotent orbits in SO(nv + 10,C) with dimension O(knv) with k ≤ 8.

that signs alternate along lines, rows of even length start with +, and the total number of

(plus,minus) signs is (p, q). A given signed Young tableau may corresponds to 4 different

orbits when all rows have even length, 2 different orbits when all rows with odd length

have an even number of +, 2 different orbits when all rows with odd length have an even

number of −, and a unique orbit in other cases [29]. For example, SO(8, 2,R) admits 7

non-zero nilpotent real orbits, corresponding to the partitions

(22, 16) , (3, 17)I,II,III , (32, 14) , (5, 15)I,II . (B.4)

of dimension 14, 16, 26 and 28 and nilpotency degree 2,3,3,5, respectively. In particular,

there are 4 inequivalent nilpotent orbits of degree 3, none of whose dimension agrees with

the dimension Z (the orbits (5, 15)I,II do happen to have dimension 28, but are related to

a 13-th grading, as indicated above). This is an artifact of this low-rank case, since the

nilpotent orbit (34, 1nv−2) does appear in the list of real nilpotent orbits of SO(8, 2+nv,R)

for nv ≥ 2. Choosing the sign configuration [(+ − +)4, (−)nv−2], all rows have odd length

and carry an odd number of minuses, so this configuration appears in two varieties, related

by an outer automorphism of SO(8, nv + 2).
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